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ABSTRACT 

This paper deals with the statistical analysis of strength and 

fracture of materials in general, with application to fiber composites. 

The "weakest link" model is considered in a fairly general form, and 

the resulting equations are demonstrated by using a Weibull distribution 

Eor flaws. 

problems, and therefore additional attention is devoted to analysis and 

statistical estimation connected with this distribution. 

working charts are included to facilitate interpretation of observed 

data and estimation of parameters. 

are considered for various kinds of flaw distributions. 

This distribution appears naturally in a variety of 

Special 

Implications of the size effect 

The paper describes failure and damage in a fiber-reinforced system. 

SoEe useful graphs are included for predicting the strength of such a 

system. Receat data on organic-fiber (PRD 49) composite material is 

analyzed by the Weibull distribution with the methods presented here. 

The contents should serve as a useful handbook for data chsracterization 

and statistical fracture analysis. 
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INTRODUCTION 

The tensile strength of brittle materials is variable and usually 

low. 

t o  aid in design of brittle structures under tensile loading. 

As a result, a variety of statistical methods have been developed 

The reinforcing materials used in resin-matrix composites are often 

brittle (e.g., boron, graphite, or glass filaments). The strength 

behavior of these filaments can be approached using the methods which 

have been traditionally applied to brittle materials. 

There is abundant evidence to iI..!icate that ultimate strength of 

any material is less variable if failure is preceded by plastic flow or 

microcracking, so that brittleness - where failure is not preceded by 
either - is inevitably accompanied by strength variability. 
of this variability are many and varied and are related to both material 

factors and inherent testing problems. 

The causes 

At. one time it was thought that imperfect experimental technique 

caused most of the specimen-to-specimen variation in laboratory 

measurements of strength of a brittle or complex material. 

development of new and sophisticated specimens and improved techniques 

has not been sufficient to eliminate the practical statistical problem, 

and gradually the need for statistically oriented experiments became 

more widely recognized. 

However, 

In this paper some statistical models are reviewed for strength of a 

brittle material and the interpretatior? of test results in terms of the 

Weibull distribJtion. 

used to illustrate the usefulness and potential limitations of a simple 
statistical interpretation. 

Some recent data on a fiber-composite material are 

, Technical Memorandum 33-580 1 



I. STRENGTH OF MATERIAL WITH FLAWS 

1. THE SIMPLE CHAIN OR SERIES MODEL 

Var i ab i l i t y  of s t r eng th  may be explained by the  f a c t  t h a t  materials 

inevi tab ly  contain a d i s t r i b u t i o n  of flaws of var ious seve r i ty ,  such as 

srirface scra tches ,  cracks a t  g ra in  boundaries, inclusions,  e t c .  Certain 

flaws may be c h a r a c t e r i s t i c  of t he  specimen f ab r i ca t ion  and handling 

process: f o r  example, sur face  cracks introduced during machining. 

Such defec ts  would be expected on t h e  sur face  of t he  specimen. 

defec ts  may be dependent only on length: e.g., chipping o r  s p a l l i n g  along 

sharp edges. S t i l l  o ther  mechanisms may produce regions of severe 

l o c a l  weakness throughout t he  material's volume, i n  which case the  

s t rength  w i l l  be  an inverse funct ion of s i z e ,  s ince  flaws of varying 

seve r i ty  are present  and a smaller specimen is  less l i k e l y  t o  contain 

a sever flaw. 

Other 

Whatever t h e  d i s t r i b u t i o n  of the  flaws, a bas ic  sssumption i n  

pred ic t ing  t e n s i l e  s t rength  of a b r i t t l e  material is t h a t ,  for a given 

stress, the  worst f law cont ro ls  s t rength ,  j u s t  as the  s t r eng th  of a 

chain is cont ro l led  by t he  weakest l ink .  

In  f a c t ,  l e t ' s  consider t h e  s t a t i s t i c a l  problem of a chain whose 

l i nks  have varying s t rengths .  

represent ing material with more severe defec ts .  

The weaker l i n k s  can be thought of as 

I f  t h e  f r a c t i o n  S ( c )  of t h e  l i nks  have s t rengths  exceedfng d , 
then a chain composed of N l i n k s  w i l l  successfu l ly  t ransmit  the  stress cr 

only i f  a l l  i ts  l i n k s  survive.  

j o i n t  p robab i l i t y  of N l i n k s  surviving,  namely S . 
t h a t  t h e  chain f a i l s  ( t ha t  is, t h a t  a t  least one l i n k  f a l l s )  is: 

The p robab i l i t y  t h a t  t h i s  occurs is t h e  

The probabi l i ty ,  G, N 
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The number of links has an extremely strong effect on chain strength. 

This is shown schematically in Zig. 1 for a hypothetical link-strength 

distribution. This is an example of size effect. 

1.0 - 

Strength, u- 

Fig. 1. Strength distribution for an 
individual link and a chain made 
of 20 such links. 

The probability density distribution for single links and 20-link 

chains is the first derivative of the functions graphed in Fig. 1. 

These aie depicted schematically in Fig. 2. 

Strength, u- 

Fig. 2. Probability den8itielr for the link 
and chain of Fig. 1. 
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In these two figures the curves for the chain represent the statistical 

behaviar of the weakest of the 2G links, while the curves for the single 

link are based on the hypothetical link-strength distribution. 

in Fig. 2 that the chain (weakest link) distribution becomes distorted 

and less symmetric than the parent distribution. 

We note 

The peaks of the curves in Fig. 2 represent the most probable values 

(modes) of the distributions, for which formulas may readily be developed. 

Using primes to denote differentiation with respect to strength,@, the 

mode of strength is found by solving 

2 0 -  d2 s N ) = o ,  
Q 

which gives, for least value, 

(2) S8" = - (N - 1) 

By similar arguments 

value is a solution of 

which give? 

it ma!, be shown that the most likely maximum 

If an algebraic. expreseion were put in for S these formulae would relate 

the modal extreme values of strength to the distribution size, N, and 

the distribution parameters in the function S. 

For example, the link-strength distribution might be the Gaussian, 

2 
S =,(* -& e-t 1' dt * erfdt), 

4 JPL Technical M e m o r a n d u m  33-2 



whose derivatives are 

where t is the measure, in units of standard deviation, from the mean. 

The extreme values are given by 

where erfc(t) is the complementnry error function defined above. Because 

of eymmetry both modal extremes are estimated by Eq. (4). This equation, 

which predicts the most probable extreme value of t in a sample of size N, 

is graphed in Fig. 3. 

e a 
X 

II 
- 3.0 

B 1.0 

* o  
1 10 100 

Sample SILO, N 

Fig. 3. Modal tlctremee of the rtandard 
normal dilrtribution a6 a function 
of sample rize. 

When the form of the distribution S or S '  l e  known and exhibits a 

mode, Eqe, (2) and (3) may be applied. There are, however, ca6es for 

which no mode exists (in the sense of Fig. 2 where the derivative vanLshec), 
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and some alternative characteristic must be used to describe the chain 

strength. Take for example the simple exponential distribution 

for which the man p = l/h. If Eq.  (2) is applied here the result is 

not very usefuj I However, by applying Eq. (1) to find the mean value - x 

of the least among k', we find 

The ratio of average chain strength to average link strength is thus secn 

to be inversely proportional to the number of links. 

2. THE GENERAL CHAIN 

It was tacitly assumed in the preceding section that all "links" in 

the chain model were loaded to the same stress, in analogy to a real 

chain. 

a massive specimen of material there exist, inevitably, stress gradients 

caused by geometric features such as holes and other irregularities or 

as a result of intentionally applied moments. 

result from the most adverse combhation of local stress and local 

weakness, so that it is not simply the weakest "link" which controls the 

initiation of fracture. We must, therefore, account for the variations 

in applied stress and the resultant effect on the local probability of 

failure. 

While this may be 6 practical model for filaments or whiskers, in 

Localized failure will 

The material is regarded as containing randomly situated local 

failure elements (links or flaws), wit5 a strength 

distribution, S ( c )  , expressing the probability that local efrength 

JPL Technical M e m o r a n d u m  33-580 



exceeds C . Within a region Ll V where the  dens i ty  of f a i l u r e  elements i 

(flaws) i s  pi  there  e x i s t s  a stress V , and the  p robab i l i t y  t h a t  

f r a c t u r e  does z x t  i n i t i a t e  t he re  is  the  probabi l i ty  t h a t  t he  number of 

f a i l u r e  elements which w e  expect i n  t h i s  volume w i l l  a l l  simultaneously 

survive the  stress 6i. 

with the  simple chain: 

i 

This j o i n t  p robabi l i ty  is given by analogy 

It should be noted t h a t  t h e  number of flaws found i n  t h e  volume 

AV 
d i s t r ibu t ion .  

a t t v t i o n  only t o  the  expected number of flaws p 

i s  i t s e l f  a s t a t i s t i c a l  quant i ty  and may be described by a Poisson 

This add i t iona l  complication w i l l  be avoided by confining 

i 

i ovl' 

Extending Eq. ( 5 )  t o  consider add i t iona l  volume elements making up 

a t o t a l  volume V, w e  can write f o r  t he  expected p robab i l i t y  of j o i n t  

su rv iva l  Sv of a l l  these regions: 

Taking logs g ives  t h e  sum: 

i -1  

By going t o  t h e  respec t ive  l i m i t s  of AV and N t h e  sum may be replaced 

with t h e  volume in t eg ra l :  

In Sv = 1 [p In Sb)) dV 
V 

I'echnical M e m o r a n d u m  33-580 7 



or 

8 

In 1 fairly general way we have accounted for the nonuniform stress 

and the effect of volume, and, for sex! measure, we have allowed the 

flaw density t< be space dependent. 

were known, as well as the flaw density and the applied stress, Eq. (6) 

could be used to predict the expected probability of survival of a 

specimen. Using 

If the flaw strength distribution 

- 3 h S(U1 = g(0) 

we get 

The mos: convenient application of this equation is to assume 

tentztive forms for the function g(a) hnd, if experimental results 

compare fevorably, to utilize the assumed g ( a )  in analysis and design 

estimates. The well-known Weibull distrLbution results from putting 

JPL Technical hiemorandurn 33-580 
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11. ARRANGING AND PLOTTING STATISTICAL DATA 

In the subsequent sections the interpretation of statistical data 

is considered in connection with estimaking parameters and graphical 

depiction of the observations. 

illustrate a method of assigning probabilities a,- '  plotting the data. 

The method described here is not unique, but it has been found convenient 

and reliable. 

Here, a short digression will be made to 

If a group of N observations of a variable x has been accumulated, 

the data should be arranged in serial order with increaslng x and each 

of the observations numbered (ranked) in order. 

what probability does the ith observation represent? 

for example, that the smallest observation (rank j = 1) in a group of, 

say, ten ultimate strength measurements, should be plotted somewhere 

between 0 and IO% failure probability; and that the sixth of this group 

(rank j = 6 )  should be plotted between 50 and 60% failure probability. 

In general the ith observation should be plotted in the interval 

(j-l)/N SF t j / N .  

literature fall in this interval. 

be little difference between (j-l)/N and j / N .  

method, no unique probability plotting position ia selected. Instead a 

line, representing a probability interval, is drawn. The question of a 

unique plotting point has been the subject of some controversy, and 

various proposal.: have been made, for example: 

Now the question is: 

It should be clear, 

13 fact, all plotting positions recommended in the 

Obviously as N becmes large there will 

According to this plotting 

JPL Technical Memorandum 33-580 9 



The first two are, of course, the upper and lower bounds of the lth 

rank of length 1 / N .  

intzrval. 

to the ith observation. 

position. 

value into two equal groups. 

taken, half of the ith observations are above and half below the variable 

corresponding with this value of probability. 

position is desired, this one should be used. Finally, it is frequently 

useful to normalize the observed variables, using either the sample 

average or median as the normalizing factor. 

substantial differences in the variable but similar shapes to be 

studied jointly. 

subsequent sections. 

The third form is the midpoint of the probability 

The fourth is the so-called mean rank probability corresponding 

The last expression is the median rank plotting 

Statistically this point divides the observations of the ith 

That is, if many samples of size N are 

If a specific plotting 

This allows samples having 

This normalization is discussed in detail in 

An illustration of this method is given in Table 1 and Fig. 4 .  

The 

These 

are tensile strength data for glass filaments tested at -196'F. 

columns headed BAVG and BMED are rormalized. 

bottom of the table CV is the ratio of standard deviation to the mean. 

The probability columns give the rcedian rank plotting point, and the 

bounds of the probability interval. The plot of this data in Fig. 4 

shows that the plotting point does not add mich t o  interpretation or 

display of this sample. 

data with a theoretical distribution will be considered. 

In the summary at the 

In later sections the problem of fitting such 

10 JPL Technical Memorandum 33-580 



Table 1.  Ranked sample data (column X) shown here are normalized to the mean a?d 
the median (columns BAVG and BMED, respectively;. 
intervals are also shown. 

Plotting points ard 

R QNK 
J 
J 

3 
4 
5 
b 
7 
6 
9 
10 
11 
12 
1Z 
1u 
13 
l b  
17 
16 
19 
20 
21 
2? 
23 
24 
23 
2b 
27 
28 
29 
30 
31 
32 
33 

c 
i 
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P a m  
8 a 

111719tJBMld 
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111. SOME PROPERTIES OF THE WIBULL DISTRIBUTION 

1. ANALYTICAL FORM 

The conventional form of the so-called two-parameter Weibull 

distribution is: 

where S is the probability of survival, c i s  an arbitrary applied stress 

in 6 volume V, and CL and go are parameters. 

To see the implication of this formula, consider a speciman under unl.form, 

aniaxial tension. Thc specimen is assumed to fail according to the weakest- 

link mode'.; that is, upon the infriation of fracture anywhere, gross failure 

occurs. If the stress is everywhere the same, Eq. ( 8 )  becomes 

This distribution is shown for V = 1 in F i g .  5 .  The variabllity 

decreases as m increases, and for low values of m, say less than 2,  it becomes 

very obviously nonsynrmetric. Below m = 1 there is no mode. 

0 0.5 1 .o 1.5 

4 0 0  

Fig. 5 Shapes of Weibull distributions. 
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@ne of the purposes of strength measurements on a particular material is 

to estimate the value of the modulus m for that material so as to characterize 

the mat9rial for structural reliability forecasts. 

graphicalmethod of making such escimates will be discussed later. 

Various analytical and 

In the case of flexural stress, a form different from Eq.(9)  results. Using 

d = G B  (:)(:) to describe the stress distribution in a simple centrally 

loaded rectangular beam (of half-height c, half-span s, and total volume 

V ) we find B m 
s = eup [-e) 

2(m + 1) 

The change of stress distribution has htroduced a factor affecting 

only the volume. The situation in simple bending is equivalent analytically 

to uniform tension provided appropriate correction is applied to the volume. 

This is a manifestation of the size effect, which i s  discussed next. 

2. THE SIZE EFFECT 

Large specimens of brittle or “weakest-link‘material are weaker than 

smali specimens, just as the long chain is weaker than the short 

one. If specimens of sizes V and V are tensile-tested and are character- 

ized by similar values of m and “0 , Eq. 
1 2 

(9) may be used to compare the 

strength at the same probability of failure (when m and 5 are the same 

this also compares the mean strengths of both volumes), leading to 

and the well-known strength size effect 

‘i‘his equation immediately suggests a method for estimating m. 

14 JPL Technical Memorandum 33-580 



Rewriting it in logarithmic form gives 

log e) = log e), 
and a plot of strength ratios vs volume ratios on logarithmic coordinates 

should yield a straight line of slope l/m if the Weibiill distribution 

is appropriate. In fact, Eq. (11) holds also for any stress distribution 

provided that the stresses applied to the various sized specimens are geo- 

metrically similar. As pointed out before, the effective size is altered by 

changing the stress distribution. ‘h compare, for example, the case of 

uniform tension with simple bending, we use Eqs. ( 9 )  and (10) (with 

identifying subscripts) at equal probabilities, getting 
1. 

and the ratio of strengths is 

showing flexural strength greater than tensile strength, especially for 

more variable material. 

In a similar way the expected strengths in uniform bending, or tension, 

or any stress distribution, may be compared at equal probabilities of failure, 

simply by equating the corresponding exponential terms from Eq. (8). 

We can express this size effect in a general way (for constant m and%) 

as follows. The applied stress is written in terms of a reference stress 

(say the maximum tensile stress) and a geometric function which describes 

the stress distribution (as was done above for the simple beam), that is, 

The exponential terms of Eq. (8) for two arbitrary cases Ui[fi(V)] - 
being compared become a y l  [ f l (Vjm dV = UFJ [fz(V’]” dV, 

v1 v2 

JPL Technical Memorandum 33-580 15 



and the general expression f o r  size effect becomes 

So far the flaws in the material have been tacitly assumed to be distributed 

throughout the volume and the integrations have been carried throughout the 

specimen volume. The strength-controlling flaws may, however, be confined in 

many cases to the surface (e.g. 

the length of reinforcing fibers. 

in glass) or even to the edges)and along 

For these cases the form of the stress 

distribution and the region of integration are different. Let's recon- 

sider, for example, the simple beam of width b with a surface distribution 

of flaws. The exponential term now becomes 

I 
the bottom beam surface 

m 
+ (?) 4 1 f ({r ($7 dx dy. 

x=o y=o 
L J 

the surface on vertical sides of the 
beam, subject to tension 

v 

This leads us to 

where A is the area of the bottom surface in tension and B the total area 

of the vertical surfaces in tension. 
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Equation (13) was used to calculate the size effects in tension, 

siwple bending, and uniform bending for flaws distributed throughuut the 

volume, area, or length. The resulting formulas are collected in Table 2.  

The size effect helps to explain vhy, even in brittle materials, the 

influence of stress concentrations, at holes or notches, is not as great 

as would be expected from the theoretical strezs concentration factor 

and a maximm stress failure criterion. The large theoretical stresses 

are operative in very small volumes within which the probability of 

finding weakness is greatly diminished. 

3. STANDARDIZED FORMS OF THE WEIBULL DISTRIBUTION 

Just as the application of the normal distribution is broadened and 

eased by use of a standard normalized variable, so also is the case with 

the Weibull distribution. Equation ( 8 )  is rewritten using a reference 

stress and geometric function for stress distribution and put into 

logarithmic form: 

If the strengthr corresponds to the probability S (e.g., W might 
P P P 

be the median and S - 0.5), then the constant bo is given by 
P 

be the median and S - 0.5), then the constant bo 

(kr 4 [f(Vfl” dV = -$ 

is given by 
P 

d+ 1 
P U 

and may be eliminated from Eq. (8) to give a new, and flexible, normalized 

form: 

JPL Technical Memorandum 33-580 17 
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It can be shown that if C is the mean value of tne reference stress 
P 

at fracture then 

T h i s  result allows us to write the distributuion of Eq. 

of a mean-normalized variable: 

(14) in terms 

m m  Y = exp (-a r ) (1 5) 

where fi = Qiume,,. 

Alternatively it may be more convenient or desirable to normalize 

to the stress at some other probability (e.g., in an incomplete test in 

which only a fraction of the test specimens have been observed); for 

example, the median. For this case S = 0.5 and Eq. (14) becomes 
P 

s = exp (-0.693Am) (16) 

where A = u/umedian- 

Experience has shown that, by and large, Eqo. (15) and (16) will give 

Both of these normalized forms of the Weibull distribution adequate service. 

have been plotted onto useful working charts in Figs. 6 and 7. 

The normalized form is independent of the detailed stress distribution 

and therefore allows, in principle, the pooling of diverse groups of test 

data, if each has been appropriately normalized. 

has been replaced by an estimate of the mear, or median derived from the 

sample, 

observations with a Weibull function. Furthermore, the normalized form 

lends itself readfiy to analytical manipulation, for example to determination 

of the variance and statistical bshavior of extreme values, discussed next. 

The scaling parameter CT 0 

and only m remains to be estimated in order to fit a set of 
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4. EXTREME VALUES OF THE WEIBULL DISTRIBUTIObi 

Using the general formulas for extreme valves given in Sec. I, 

we find the modal extremes of the normalized Weibull distribution 

and to be given by 3 min 

“min 

and 

The modal range is determined from the difference 

extremes. 

In figs. 8 and 9 are shown the extreme values and 

(17) 

+ 1. (1 8) 

between these 

range, uormalized 

to the mean. 

value behavior as sample size (or volume) increases. Equations (17) and 

(18) may be used to construct similar charts for median-normalized variables. 

A commonly used index of variability is the coefficient of variation CV 

dzfined as the ratio of standard deviation t o  sample mean. 

These charts give a useful perspective of the extreme- 

We can easily calculate the coefficient of variation of the 

normalized Weibull distribution as well as the coefficient of variation of 

of the least values. The cumulative distribution of least values is, 

in acl.ordance with Eq. (1): 

G = 1 - S  N 

= I - exp E N ~ ~ S $ I  l m  1. 
The mean value of this distribution (the mean least value) is 

JPL ,.ethnical Memorandum 33-580 
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Fig. 8. Most probable extreme values of the Weibull 
distribution (relat ive to mean).  

The formula for the variance is 
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To carry out the integration it will be useful to employ the following 
m 

integral formula: H(p, c, m) = dx 

The standard deviation of the least among N is found to be 

The coefficient of: variation for the Weibull distribution is ob- 

tained by combining Eqs. (19) dnd (20) and putting N = 1. 

(21) 

The standard deviation of the least values in a sample of size N 

may be compared with the sample mean or with the mean of the least values. 

The standard deviation of the least values relative to the sample mean 

while the coefficient of variation of the least values is the same as 

Eq. (21). 

alizing term 

Fig. 10 where two approximations are shown: 

Note in the last two equations that all reference to the nonn- 

Zn(l/S ) has vanished. Equation (21) is graphed in 
P 

cv % (a fair approximation), 

0.94 
cv s (&) (an excellent approx- 

imat ion). 

These approximations and the graph are handy for thumb-rule estimates. 
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Fig. 10. Coefficient of vnriation (CV) v8 Weibull modulus. 
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5, OTHER ESTIMATORS 

There are, of course, many ways t o  estimate the  parameters of a 

hypothet ical  d i s t r i b u t i o n  from the observed da ta ,  One of t he  more 

in t r igu ing  is the  method of "maximum l ikel ihood" which, i n  c e r t a i n  

respec ts ,  would be expected t o  be a t  least as p rec i se  as, i f  not  more 

prec ise  than, any o ther  estimator.  Its appl ica t ion  general ly  ( the  

Weibull d i s t r i b u t i o n  included) requi res  an e l ec t ron ic  computer, and 

therefore  i t  may not  be worth the  e f f o r t  i f  a computer is not  r ead i ly  

avai lable .  In  b r i e f  t he  method is as follows. I f  t he  p robab i l i t y  

densi ty  is f ( x , g )  where the  % are parameters of t h e  d i s t r i b u t i o n ,  a 

funct ion is formed k i t h  the  observations xl, x2, x3, 

which is  t h e  simultaneous product of f (x ); t h a t  is, the  j o i n t  

p robabi l i ty  density:  

' * * '  xr ' * "  "N 
J '% 

N 

j = 1  
@ = ?-r f(Xj,Uk). 

Taking logs gives 

The maximum of t h i s  funct ion,  a l so  ca l l ed  the  "likelihood function," is 

sought by s e t t i n g  8L/8% equal  t o  zero: 

N 
a 

N 

j = 1  
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This gives k equations with k unknowns (the parameters u ). If certain k 
requirements are met by the function L, these equations may be solved for 

the % parameters. 

maximum likelihood estimates. 

The parameters \ computed this way are called 

Stili another analytical approach is a point-by-point estimate of m, 

using each ranked observation separately, and finally corbinfng these 

individual estimates in a weighted average tcj gtve the sample 

estimate. Using Eq. (14) and solving for m, 

The median rank plotting position for the ith observation 9 is 
j 

+ 0.7 
3 

Therefore the ith observation may be used to estimate m by 

Each of the j estimates of m should be weighted in accordance with the 

sensitivity of m to changes of S. Since the charts of Figs. 6 and 7 use 

coordinates of S and log m, a weighting factor for the graphical estimates 

is 

That is, the steeper lines on the charts give more reliable estimates of m. 
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The formula for w becomes 
j 

The m-estimate i s  the weighted average: 

N 
n A w . m .  

A ~ ‘ 1  J J  
N m =  
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6. HOW GOOD ARE THE m-ESTIMATES? 

A broad answer to this question is -- not very! A study was made 

of the different methods of estimating m, using computer-generated 

samples drawn from known, controlled parent distributicw. The 

following estimators were investigated: 

1) Minimum value. 

2 )  Maximum value. 

3)  Range. 

4 )  Coefficient of variation. 

5 )  Maximum likelihood. 

6) Log-log graphical estimates (Fig. 11). 

7 )  Semilog graphical estimates (Fig. 6) .  

No one method appeared consistently superior for the range of m-values 

(3-30)  and sample sizes (10-100) studied. Broaaly speaking, the estimates 

vf m 

variation of fi. 
were normally distributed about the true value with a coefficient 

The results of the study are summarized in Fig. 11. 

0.4 
E - 0.3 
0 

'i 0.2 
.- 5 

!! 

.- f 0.1 

s 

.- 
Y - 0 

8 
V 

0.05 
10 20 30 40 5 0 6 0 8 0  100 

Sample size, N 

30 

Fig. 11.. Variability of m-estimators. 
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IV. ESTIMATING THE WEIBULL MODULUS, m, FROM OBSERVED DATA 

After a set of data has been accumulated, say N observations of 

strength for brittle beams, it is possible to interpret the data and 

determine whether a Weibull distribution gives a good fit and what the 

best choice of the modulus m is to fit the observed data. Once the 

distribution is completely defined, it is possible to predict the 

strength of other structures of the same material operating under known 

stress distribution. It is also possible to make a straightforward 

determination of the probability of survival (reliability) for a given 

mass of the material under specified operational conditions. 

analysis the "safety factor" used in design can be directly related to 

the probability of survival. 

By this 

Assuming the experimental data has been arranged and tabulated as 

described in Sec. 11, a number of provisional estimates of m may be 

quickly made for thumb-rule purposes. 

from a graphical examination. 

The final choice should result 

Various n-estimates will now be described. 

To illustrate the application of the various estimators, a sample 

of 10 observations was prepared, drawn at random frm a parent population 

having a Weibull distribution with m = 6 and a mean of 1. 

samples of 10 each were actually drawn. The 20 least values (rank = 1) 

were averaged to give the first entry in Table 3 .  The 20 next-to-least 

values (rank = 2)  were averaged to give the second entry, and so on. 

Thus, each of the table entries is an average of 20 values. 

Twenty 
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Table 3. Sample data for illustrating various methods of estimating the Weibull 
modulus m. 

Median rank 
plotting point, 

Probability 
inter\ 41 

Fraction of Fraction of 
Rank, j mean median 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.660 
0.807 
0.890 
0.950 
0.983 
1.035 
1.089 
1.135 
1.192 
1.257 

0.654 
0.799 
0.882 
0.941 
0.974 
1.025 
1.08 
1.124 
1.181 
1.245 

0.067 
0.163 
0.26 
0.356 
0.452 
0.548 
0.644 
0.74 
0.837 
0.923 

0-0.1 
0.1-0.2 
0.2-0.3 
0.3-0.4 
0.4-0.5 
0.5-0.6 
0.6 -0.7 
0.7-0.8 
0.8-0.9 
0.9-1.0 

Statistical determinaiions: 
Mean = 1.000 
CV = 0.182* 

Median = 1.009 

* 
The value of CV for the sample is computed by 

N - 1  cv = 

A where !A is  the sample average and N the sample s i z e .  

1, SINGLE NUMBER ESTIMATES 

A l l  of the working charts presented in  Sec. I11 may be used t o  

estimate m from observed data. Figure 8 ,  9 ,  and 10 are d irect ly  applied 
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with the observed extreme values, range, and coefficient of variation, 

respectively. The following estimates of m are obtained for the sample 

data in 'Table 3: 

Graph Estimate 
Basis of eatiinate used o f m  
Maximum (1.257) Fig. 8 6 
Minimum (0.660) Fig. 8 5 
Range (0.597) Fig. 9 5.5 
CV (0.182) Fig. 10 6.4 

2. GRAPHICAL ESTIMATES 

Recall Eq. (14) and write it in logarithmic form to get: 

On conventional log-log coordinates the data may be approximated with a 

straight line of slope m, In fact, such probability paper is available 

with suitably labeled coordinates, which eliminates the need to compute 

Zn(l/S). Fig. 12 shows how thle probability paper may be constructed. 

The slope of the straight line approximation may be measured directly to 

get an estimate of m, Figure 13 shows the sample data (from Table 3) 

plotted on this paper (both the probability plotting point and interval 

are shown), and the slope of a straight line fitted by eye to the data. 

Charts of the normalized distributions (e.g., Figs. 6 and 7) are 

preferable to the log-log chart of Fig. 13 because they present the 

data in a more useful prspective. 

been plotted in mean-normalized form in Fig. 14 and in median-normalized 

form in Fig. 15. 

Therefore the data of Table 3 have 
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13, Sample data on log-log paper. Fig. 
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These graphs show m = 6 to be an excellent fit to the 

data, and furthermore they give some information on the m-values 

represented in the sample. 

In order to get a feeling for the way the approximation fits the 

sample data, a Cartesian plot was made using F i g . 1 4  as a basis. This 

plot, Fig. 14 exhibits a very satisfactory comparison between the 

observed data and the Weibull distribution with m = 6. 
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a 
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Fig. 16. Cartesiar, plot of sample data. 
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V. SOME COMMENTS ON APPLICATION 

Is there any point in bothering with a statistical approach to 

brittle fracture when the m,ethods of fracture mechanics are available 

to explain brittle fracture? After all, in principle, we need only know 

the geometry of the worst flaw in a structure and, from laboratory 

measurements of fracture toughness, we can predict the failure conditions. 

While the theoretical and experimental contributions of fracture 

mechanics have been substantial, a certain amount of caution must be 

exercised. Inspection of a structure for flaws involves some risk of 

passing over or missing a critical feature. Those flaws which are 

detected can be defined geometrically only within certain limits, and 

even repeated measurements on laboratory samples with controlled, 

artificially induced cracks exhibit a serious variability in fracture 

toughness. 

A particularly striking example of fracture toughness variability 

is shown in Fig. 17. 

selected and the laboratory precracking of specimens was carefully 

controlled, the cause of this variability must be ascribed to 

If we can assume that the naterial was carefully 

statistically varying material properties. 

Application of data such as that shown in Fig. 17 will require 

consideration of size, since more samples or a larger structure will 

increase the probability of experiencing a value of fracture toughness 

even less than caserved in laboratory tests. 

Conventional fracture mechanics does not account for this size 
* 

effect. The following dramatic example will illustrate the point. 

* 
J. E. Srawley and J. B. Esgar, Lewis Research Center, Cleveland, 
Ohio, Rept . NASP--TM-X-1194 (Jan. 1966). 
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In Apri l  of 1965, a 260-inch diameter rocket  motor case f a i l e d  dliring 

hydro-testing, a t  56; of t h e  intended proof pressure.  Fracture  emanated 

from a flaw i n  a weld. Analysis of t he  flaw indica ted  t h a t  t he  apparent 

f r ac tu re  toughness w a s  57,000 p s i - c .  

precracked weld specimens gave the  r e s u l t s  shown i n  Table 4. 

Laboratory tests of a few 

In  t h e  r epor t ,  some comment is made regarding the  discrepanc: between 

the  average f r a c t u r e  toughness of t he  laboratory specimens and the  

considerably lower frac ' iure toughness of t h e  opera t iona l  s t ruc tu re .  

However, t e s t i n g  only 2 i n .  of weld out of a t o t a l  of 1000 f t .  of weld 

length requi res  statistical accounting f o r  t h e  e f f e c t  of size .  In  view 

of t he  l imited sample s i z e  estimates are necessar i ly  going t o  be rough. 

Using t h e  observed va lue  of CV with Fig. 10 w e  f'ind m = 25. I f  t he  

laboratory test samples can be considered t o  be representa t ive  of t he  
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Table 4. Results of fracture toughness 
tes ts  on five weld samples, each 
218 by 318 in. in cross section, 
out of a total of 1000 ft of weld. 
(Data from NASA TM-X-1194) 

Fracture  tou hness, 
Specimen No. p s i d  

1 77,700 
2 ’77,500 

3 75,400 

4 84,500 
75,000 5 

Mean = 78,020 
- 

Std. dev. = 3,820 
cv = 0.049 

weld i n  the  motor case, then the  s i z e  e f f e c t  w i l l  be given by Eq. (11): 

Kmotor case = (  vmmple  J’” 
Ksample Vmotor case 

I f  w e  s u b s t i t u t e  i n  t h i s  equation t h e  experimentally determined va lue  

78,020 ps i -  in . ,  and t h e  r a t i o  of sample s i z e  t o  t o t a l  weld for Ksample’ 

s i ze ,  2 in./12,000 in. o r  1/6000, we obtain 

= 78,020(1/6000) 1/25 
Kmotor case 

= 55,090 psi-& . 

Therefore, t he  f r a c t u r e  toughness exhibi ted by t h e  worst region i n  the  

weld is, f o r  us ,  no su rp r i se .  The coincidence of t h e  worst f law with 

the  weakest region should also be an t i c ipa t ed  s ince  thermal-stress induced 
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flaws and effects of shock or partial loading will be most detrimental 

in the inferior region. 

Actually there are three factors, all of them fundamentally 

statistical, which must be considered in evaluating the capacity of an 

operational structure. 

presumed to be a material property. 

of flaw intensities in the fabricated structure (a low flaw intensity 

located in a region of low toughness may be critical). 

number of flaws and their spatial disposition. 

are accounted for, a statement of reliability under specific operational 

conditions can be made. Conditions or materials which result in 

time-dependent changes can greatly complicate the problem. Examples of 

these are corrosive environments which cause sharpening and intensification 

of flaws, or physical changes in the material resulting in lowered 

fracture toughness, or gross geometric effects resulting from flow or 

corrosion which substantially alter the nominal stress field. 

First is the distribution of "fracture toughness , I 1  

Second is the inherent distribution 

Third is the 

If all three factors 

In designing an operational structure made of massive brittle 

material there is a strong motivation to employ only statically 

determinate supports, to allow precise calculation of stresses. However, 

since brittle materials are frequently quite strong in compression, it 

may be better in certain circumstances to give up detailed knowledge 

of the working stresses, in exchange for redundant support and "crack- 

tolerant!'behavior. 

alumina (A1203) beams tested in simple flexure and as redundant beams 

with built-in ends. 

A simple example is shown in Fig. 18 comparing 

With redundancy the first tensile fractures are not 
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'Fig. 18. Redundant support tests 

followed by co l lapse  - i n s t ead  an a rch l ike  s t a b i l i t y  develops snd eventual 

compressive f a i l u r e  of t h e  segments is t h e  cause of t h e  co l lapse .  

load-carrying capab i l i t y  of t h e  redundant s t r u c t u r e  is s u b s t a n t i a l l y  

The 

higher. 

While some so-called b r i t t l e  materials may be f a i r l y  w e l l  described 

by the  "weakest l ink"  o r  series model, i t  is  abundantly c l e a r  t h a t  t h i s  
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description of material fa i lure  is  too severe. 

materials demonstrate capacities for partial  and multiple fracture, so 

that redundcncy for load transmission i s  inevitably present, and i t  i s  

only when such redundancy is exhausted that the weakest l i n k  decides 

collapse.  

Even the most "bri t t le"  
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VI. APPLICATIONS TO MULTIFILAMENT STRANDS AND COMPOSITES 

1. BRITTLE REINFORCING FILA?!ENTS 

There is a rapidly growing interest in filament-reinforrzd 

structures. 

currently being made exhibit very high strengths, in certain cases 

substantially above 10 psi. These are highly perfect structures, 

having fewer and less severe flaws than massive specimens of the same 

material. 

woven into cloth or incorporated as nonwoven layers in a structural 

composlte. Massive structures are obtained with superior properties 

in certain directions. 

strong lightweight structures. One of the most common reinforcing 

materials is the brittle material, glass. In fact, most high-strength 

reinforcing materials are brittle (e.g., graphite, boron, beryllium, 

etc.). We may, therefore, interpret the strength of single fiiaments 

according to the statistical methods developed in the previous sections, 

and extend the analysis to predict the strength of a multifilament 

strand. 

used "law of mixtures'' to estimate strength. 

strength of a composite is the weighted average of the stresses at 

failure in the constituents. Thar is, if the filaments in a composite 

exhibit a mean strength 6 and occ.upy a volume or area fraction Vf, 

while at the filment failure straja the matrix carries the stress 

E G 

Small-diameter filaments and single-crystal whiskers 

6 

Such filaments are combined to form strands which may be 

Filament winding is another means of producing 

In doing so, one must be cautious about applying the frequently 

This "law" states that the 

f 

f 
in tne reaaining region i - Vf9 the composite strength will be m f  
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We w i l l  show t h a t ,  i nev i t ab ly ,  t he  " l aw of mixtures" should overestimate 

s t r eng th  of an i d e a l  multifilament s t rand .  

f requent ly  quoted f o r  composites are predicated on t h e  erroneous 

assumption t h a t  t he  filament bundle should d isp lay  a s t r eng th  equal t o  

the  average of i t s  cons t i tuents .  

Trans la t ion  e f f i c i e n c i e s  

2 .  FAILURE PROCESS IN AN IDEAL STRAND 

Assume a group of equally loaded fi laments with a unique Young's 

modulus, with no i n t e r a c t i o n s  between fi laments ( tha t  is ,  no shear  

coupling such as woul? r e s u l t  from t w i s t ,  f r i c t i o n ,  o r  a b inder ) ,  and 

independent f a i l u r e  wherein the  f a i l u r e  of any fi lament does not  

p r e c i p i t a t e  immediate adjacent f a i l u r e  o r  a l t e r a t i o n  of t he  uniform 

loading among t h e  surviving fi laments.  Take, f o r  example, a s t rand  

made of 10  fi laments with s t r eng ths  ranked as shown iu Table 5 .  

A t  what load would an i d e a l  bundle of t hese f i l amen t s  f a i l ?  Since 

t h e  fi laments are uniformly loaded, when the  u n i t  load (load p e r  

f i lament) exceeds 6.1 t he  weakest f i lament f a i l s .  

t o t a l  load of (6.1)(10) = 61. 

f i laments w u l d  then be 61/9 6.78, and a t  t h i s  load no f u r t h e r  fi lament 

f a i l u r e  w u l d  occur. 

This would occur a t  a 

The loed i n  t h e  n ine  survivjng i n t a c t  

Khen the  nine surv ivors  a r e  subjec t  t o  R u n i t  load of 7.4, t he  next 

filament would f a i l .  This is a rotb.2 load of (7,4)(9) = 66,6 The u n i t  

load i n  the e igh t  survivors ~ u l d  be 66.9/8 = 8.32, and no f u r t h e r  

f r a c t u r e  w u l d  follow. 

The next fi lament would f a i l  a t  a u n i t  load c f  8.5 o r  a t o t a l  load 

The un i t  lrs2 ;.A the  : . : e f m ~  r m i l n i n g  f i laments  w u l d  of 8 . 5 ( 8 )  = 68.0. 

be 68/7 = 9.7; s ince  t h i s  exceeds t b  cfif t l l  o f  5he next weakest 
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Table 5 .  Ranked strengths of individlsl; 
filaments in an ideal strand of 
10 filaments, to illustrate 
breaking behavior. Remaining 
capacity at  any time ia the total 
load on the strand required to 
break the weakest unbroken 
filament remaining. 

Filament Inverse Remaining 
Rank strength rank capacity 

1 6.1 10 61 
2 7.4 9 66.6 
3 8.5 8 6 8* 

4 9.2 7 64.4 

5 10.1 6 60.6 
6 10.6 5 53 

7 11.0 4 44 
8 11.6 3 34.8 
9 12.3 2 2 4 . 6  

10 13.2 1 13.2 

Mean = 10.0 
- 

* 
Overall maximum (bundle capacity). 

f i lament,  i t  would fail a l so ,  causing the  u n i t  load i n  the  six remaining 

fi laments t o  rise t o  6816 = 11.3. This, too,  exceeds the  s t rength  of the  

next weakest f i lament axbu, following the  next f a i l u r e ,  the u n i t  load 

rises t o  6 8 / 5  = 13.6, Another f i lament  snaps,  leaving four  f i laments  the  

wea'kest of which has a s t r eng th  11.0, and c l e a r l y  our rope is done f o r  - 
unleRs the load is reduced. 

The l a s t  four  f i laments ,  f o r  example, could s u s t a i n  (11.0)(4) = 44 

before the weakest among them f a i l e d .  In summary, we discover t h a t  t h i s  

idea! bundle hno a maximum nominal u n i t  capacity of 6 . 8  whereas the  average 

s t rength  of the  cons t i tuent  f i lameiits  is 10.0, and thus we were a b l e  t o  

achieve ideaJ1.y only 68X of the  average s t r eng th  tha t  would have been 

predicted by the  " l aw of mixtures .I' 
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The t h i r d  column i n  Table 5 contains t h e  inverse ranks of t he  f i laments ,  

which f a c i l i t a t e  the  computation of bundie capaci ty-  The remaining 

bundle capacity is simply t h e  product of t h e  fi lament s t r eng th  and i t s  

inverse rank. Note t h a t  f o r  t he  data  shown here (Sanple 11, t h e  bundle 

capacity rises monotonically t o  a maximum and then decreases monotonically 

t o  the  las t  (and s t ronges t )  f i lament.  

Another se t  of d a t a  (Sample 2)  is shown i n  Table 6.  Here t h e  fi lament 

s t r eng ths  are q u i t e  widely sca t t e red  and produce a series of l o c a l  maxima 

of t h e  remaining h n d l e  capaci ty-  When loaded, t h i s  p a r t i c u l a r  bundle 

would exh ib i t  pa r t i a l  breaking a t  61,  68, and 70, and u l t imate  f a i l u r e  

at  75 with only th ree  f i laments  s t i l l  i n t a c t .  Here t h e  nominal u n i t  load 

a t  f a i l u r e  (7.5) is less than half  of the average fi lament s t rength.  The 

s t r eng th  d i s t r i b u t i o n s  of t h e  Case 1 and Case 2 fi lament sample5 and t h e  

bundle c a p a c i t i e s  are p l o t t e d  i n  Fig. 19. 

Table 6. Breaking behavior of a 10- 
filament strand with filament 
strength distribution different 
from that in Table 5. 

Filament Inverse Remaining 
strength rank capacity 

6.1 10 61* 
6.5 9 58.5 
8.5 0 6 8* 

9.2 7 64.4 
11.5 6 66.3 
14 5 70 * 
15 4 60 
25 3 75** 
30 2 60 
32 1 32 

15.8 (mean) 

*&oc.al maximum. 

- 
- * 

Overall maximum (bundle capacity). 
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Flg. 19. Plots of individual filament strenglh and bundle capacity (data from Tables 5 
and 6). 

3. ANALYSIS OF IDEAL UNIFORMLY L9ADED FREE STRANDS 

If S ( e )  is the upper rank strength distribution for filaments (that 

Is, S is the probability that strength exceeds u), the nominal stress 

in a bundle wherein the applied unit stress is Q will be 

JPL Technical M e m o r a n d u m  33-580 49 



Here S is analogous t o  the "inverse rank" i n  the  previous example, and 

(7 is t h e  s t rength  of t h e  weakest f i lament s t i l l  i n t a c t .  The bundle's 

capacity is t he  maximum value 0- may achieve. We f ind  t h i s  by s e t t i n g  

i t s  de r iva t ive  with res2ec t  t o  0- equal t o  zero: 

nom 

The so lx t ion  of t h i s  equatiun w i l l  be t h e  uaximunr stress achieved i n  

the fi laments,  c*, 

- s  c* - -F ,  

and the nominal bundle s t r eng th  w i l l  be 

=nom = u* S(O$, (2 5) 

o r ,  i n  normalized terms, 

Various choices f o r  t he  s t rength  distribution may be made t o  explore 

the  trends of formu1.a (23). L e t  us  take,  f o r  example, t be  Weihull 

d i s t r i b u t i o n  of Eq. (141, repeated below: 

Thea the  so lu t ion  of E q .  (25) give8 
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The f r a c t i o n  remaining i n t a c t  a t  t h i s  qaximum s t r e s s  is  S ( T * ) ,  

and the  nominal bundle s t r eng th  becomes 

Recsll ing tha t  f o r  the mean-normalized Weibull d i s t r i b u t i o n ,  

we f ind 

These formulas give the  m a x i m u m  stress achieved i n  the  f i laments  

and the  expected noninal s t r eng th  of an i d e a l ,  uniformly loaded, s t rand .  

T h s e  are graphed i n  Fig. 20, which shows t h a t ,  even with about 5% s t d .  

dev. (m 2 251, t h e  nominal bundle s t r eng th  only achieves 85% of t h e  

fi lament average. 

In  many cases formula (30) can b2 appl ied as R p r a c t i c a l  estimate of 

ccmposite s t rength .  

I f  the composite is ca re fu l ly  fabr ica ted ,  with the  proper choice of 

matrix, i t s  s t r eng th  w l l l  exceed predic t ions  based on the  f ree-s t rand  

foimulas above.; however, miafilignment, nonuniform loading, f i lament  
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Fig. 20. Maximum filament stress, p*, 2ind nominal bundle strength, pnom, Sot h 
normalized to (i.e., divided by) average filament strength. 

damage in fabrication, and other factors may bring the actual strength 

of a composite down to, or even below, the values predicted for the 

idealized, uniformly loaded free st rand. The f abricat i ny! *:~%&ies 

controlling composite strength are many and very often quite subtle, 

requiring a specific evaluation of a particular composite for 

characterization. 

should serve as a guide to what may reasonably be expected. 

rule example, a well-designed fiber composite with filaments having a 

The computations described earlier in this section 

As a thumb- 

trength distribution with m = 10 should have a nominal strength around 
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50% of the filament average strength (with 70% or so of the volume 

occqied by filaments). On the other hand, it will be an unusual 

composite whic;; exhibits a nominal strength as high as 70 or 75% of 

the average filament strezzth. 

The bundles illustrated in Fig. 19 can be evaluated 

by Eq. f30). The comparisons are: 

analytically 

Bundle N o .  Nominal Strength Predicted Strength 11, 
I 

7.0 ! 7.5 i * I  I 

When the applied load is nonuniform, as in flexure cf a composite 

beam, the fact that only part of the filaments are highly loaded 

results in ear.’,y fracture. 

they stand, divided they fall.” 

This is an example of the adage, “united 

All of us take advantage, at least 

implicitly, of this principle (divide and conquer) when we tear cloth. 

Statistical analysis shows that the resistance of a multifilament 

strand to a linearly varying tension may be less than half of its 

capacity under uniform loadir,g. 

4. STRENGTH RETENTION OF DAMAGED MULTIFILAMENT STRANDS 

Generally speaking, some fraction of the weakest filaments in the 

ideal strand fail before the ultimate capacity is reached. Therefore, 

a certain amount of internal tracture is tolerated without ilepairment 

of strand capacity. If, somehow, progressive severing of filaments 

occurred beyond this level, the capacity of the strand would decrease. 

If the strength distribution is approximately unimodal, the strength 

JPL Technical Memorandum 33-580 53 



retention of a strand will be (in mi-malized fom) 

= I) S h )  Oretained 
(31) 

whcre the fraction intact S is less than the critical fraction S(Y)*) .  

For convenience we define a srrength retention rat!.o as the ratio 

of retained strength to maximum strand capacity (using Eq. (25)) : 

If S is taken as a Weibull distribution Le can write y) in terms of 

and the strength retention ratio becomes 

The S-term in this equation (the fraction surviving) is an index 

of the degree of progressive damage among the weakest filaments of the 

strand. This equation is plotted in Fig. 21 
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Fig. 21. Strength retention of progres- 
sively damaged strands, based 
on Weibull distribution. The 
strength retention ratio, R, is 
the ratio of remaining capacity 
to maximum capacity. 

VII. ESTIMATION OF WEIBULL PARAMETERS FOR 

ORGANIC FIBER COMPOSITE (PRD/EPOXY) STRANDS 

Large sample sizes of PRD/epoxy strands are being tested as part of 

a NASA sponsored program at the Lawrence Livermore Laboratory. 

of this test program are being reported in the progress reports under 

Contract C-13980-C and in the literature . 
series of tensile strength measurement on single-end (280-filament) 

Results 

* 
Figures 22 and 23 present a 

* 
Chiao, T. T. and Moore, R. L., "Strength of an Organic Fiber in an 
Epoxy Matrix, 'I UCRL Preprint - 74051. 
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composite strands. This 

particular phase of the program was completed with a total of 484 tests, 

shown in Fig. 23. Weibull distribution functions with m = 25 and m = 20 

are shown through the data. The functional fits are quite good over 

most of the data and are consistent with the skewness which prevails in 

both samples. 

by plotting data onto the median-normalized chart of Fig. 7. Single 

point estimates, as described in Sec. 111, showed the utility of these 

quick methods. 

Figure 22 gives the first 120 measured values. 

The Weibull modulus estimates in these cases were obtained 

Table 7 presents various single-point estimators of Weibull modulus, 

as well as the value chosen from the graphical median plot. 

Method 

Least Value 

Max. Value 

Range 

Coeff . of Var. 

Median Plot 

Table 7 

WEIBULL MODULUS FOR PRD 49/EPOXY STRANDS 

Figure 22 Data Figure 23 Data 

15 * 18 * 
25 25 ** 
18 * 20 

25 20 

25 20 
-. 

* Conservative at the minimum values 

** Nonconservative at the minimum values 

The table illustrates the value of several rapid estimators to yield 

a functional form which gives a reasonable fit to the data. 
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It is significant that in both samples the Weibull moduli estimated 

by the least values were well below other single-point estimates. These 

data suggest an overall dowliward shift of properties from the results of 

the first 120 to the sample of 484. In addition to this shift, the 

isolated minimum value of Fig. 22 is reflected in the grouping of three 

low values shown in Fig. 23.  

second mode in the population, located around 0.75 and representing 

about 1% of the population. 

reliability estimates. 

There is a possibility of a distinct 

Such a mode may be very crucial in 

The deviations between the Weibull distribution shown in Figs. 22 

and 23 and the location of the observed least values were estimated by 

inverting Eq. (16) and using the median rank probability assignment: 

a b = k-1 l'm 
N + 0.7 - 
ln(2) 

and comparing the predicted values of h with the observed values, as 

shown in Table 8. 

The negative deviation values correspond to over-estimates of strength 

and contribute to suspicion of least-value behavior. 

It is interesting to apply the size effect of Eq. (17) to these data. 

l/m The most probable minimum values of idealsamplesare related by N 

Using the first (120) sample with m = 25 as a basls,the predic'ed least 

value in the second sample (484) is 368 ksi, identical with the observed 

value. 

. 

It is not known ht present whether the causes of the statistical 
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differences between these two data sets are material and process factors 

or tes t ing  and handling methods. 

Predict. 
m = 25 

.824 

,855 

,871 

.882 

.891 

Table 8 

DEVIATION BETWEEN PREDTCTED AND OBSERVED 

STRENGTH I N  PRD 49/FFOXY SAMPLES 

I 
Predict. Fig. 2 

Obs . I Deviation 
Fig.  1 

- Obs. Deviation 

.74 -0.08 0 .73  .72 -0.01 

.875 +0.02 .7;'5 .742 -0.03 

.882 +0.01 .79b .758 -0 04 

.892 +0.01 .808 .8 -0. 

I 

.895 +0.004 815 .82 . -0. 

Rank 

1 

2 

3 

4 

5 
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VIII. CONCLUSION 

We have reviewed some statistical models that attempt to explain 

both the variability and the size dependence of the ultimate strength 

of hrittle and fibrous materials, Specific calculation8 were carried 

out using the Weibull distribution to describe local weakness of the 

wterial. 

and it has consequently become a tool in diverse fields. In addition to 

interpreting strength, it has been used in studying fatigue, stress rupture, 

meteorology, gustloading, and other areas where extreme values are of 

interest. It has also 6emonstrated s m e  definite shortcomings, particularly 

in the mapitude of the size effect prediction. In most studies of size 

effect the observed strength changes are not as great 8s predicted by the 

Weibull model. This  feature is useful for scale-up or in fiber- 

reinforced structure since predictions will tend to be conservative; 

however, they may sometimes be t o o  conservative to be tolerable. 

The methods and graphs presented should facilitate processing, 

plotting, and fitting observations with the "best" two-parameter Weibull 

distribution and provide, at a glance, a perspective of least-value 

behavior. The application to redundant parallel systems of brittle 

elements (multifilament strands) produced some realistic bounds on the 

strength that might be achieved in a composite and indicated the degree 

of optimism which may be contained in the "law of mixtures." 

Experience has shown this distribution to have wide applicability, 

The statistical approach is basically a local fracture model which, 

in conjunction with analysis of stress distribution, can lead to a 

statistical conclusion regarding a structure's reliability. It is, 
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therefore, a logical supplement to elastic stress analysis when 

variability of conventionally measured properties is dangerously large. 

Application of the methods and charts was demonstrated on recent 

organic-fiber composite data and illustrated the utility of the Weibull 

distribution as well as possible problems which might be associated 

with infrequent second modes. 
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